Code: EE3T1

II B.Tech - I Semester-Regular/Supplementary Examinations -

 November 2017
NUMERICAL METHODS AND DIFFERENTIAL EQUATIONS
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \mathrm{x} 2=22 \mathrm{M}
$$

1. a) Derive the formula to find square root of number by Newton Raphson method.
b) If the interval of difference is unity, prove that
$\Delta[x(x+1)(x+2)(x+3)]=4\{(x+1)(x+2)(x+3)\}$
c) Prove the relation among Δ, ∇, \in.
d) Write expression for $\frac{d y}{d x}$ at $x=x_{0}$ using forward difference.
e) Using trapezoidal rule evaluate $\int_{0}^{1} f(x) d x$ given

x	0	0.5	1
$f(x)$	1	0.8	0.5

f) Using Taylor's series method, solve the equation

$$
\frac{d y}{d x}=x^{2}+y^{2} \quad \text { for } x=0.4 \text { given that } y(0)=0 .
$$

g) Given $\frac{d y}{d x}=x^{2}-y, y(0)=1$ find $y(0.1)$ by using Euler's method.
h) Find the P.D.E of all spheres of radius 8 and having their centre in the yz-plane.
i) Solve $p x-q y=z$.
j) Write the possible solutions of One dimensional wave equation.
k) Solve $4 u_{x}+u_{y}=3 u$ and $u(0, y)=e^{-5 y}$
PART - B

Answer any THREE questions. All questions carry equal marks.
2. a) Apply Regula- falsi method to find the root of

$$
2 x-\log _{10} x=7
$$

b) Find the population for the year 1925 using Interpolation formula

X	1891	1901	1911	1921	1931
Y	46	66	81	93	101

3. a) The table given below reveals the velocity ' v ' of a body during the specified time t . Find the Acceleration at $\mathrm{t}=1.1$

t	1.0	1.1	1.2	1.3	1.4
v	43.1	47.7	52.1	56.4	60.8
Page 2 of 4					

b) When a train moving at $30 \mathrm{~m} / \mathrm{sec}$, steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time(t)	0	5	10	15	20	25	30	35	40
Speed(v)	30	24	19.5	16	13.6	11.7	10	8.5	7

Using Simpson's rule, determine the distance moved by the train in 40seconds.
4. a) Given that $\frac{d y}{d x}=1+x y, y(0)=1$ compute $y(0.1)$ and
$\mathrm{y}(0.2)$ using Picard's method.
8 M
b) Find $y(0.1)$ and $y(0.2)$ using Runge Kutta fourth order
formula given that $\frac{d y}{d x}=x+x^{2} y$ and $y(0)=1$.
8 M
5. a) Find the integral surface of $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$, which contains the Straight line $x+y=0, z=1$.

8 M
b) Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$.

8 M
6. a) Solve one dimensional Heat flow equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ given that $u(0, t)=0, u(l, t)=0, t>0$ and $u(x, 0)=3 \sin \left(\frac{\pi x}{1}\right), o<x<1$.
b) A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{1}$ If it is released from rest from this position, Calculate the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.

8 M

